Analytics Based Maintenance for Offshore Wind Turbines

ROMEO | Horizon 2020

Introduction and Motivation

ROMEO Project- The Objectives

Greater reliability, less repairs, more safety

Increase wind farm reliability and decrease the number of failures leading to downtime.

Increase the life time of key turbine components.

Reduce the WT O&M costs through the reduction of the resources required for annual inspections of the turbine.

Reduce the O&M costs associated to foundation through reduction in jacket substructures inspections.

Uptime Engineering GmbH -The Experts for the Reliability Process

- Founded in 2010 by Franz Langmayr et al.
- A team of 18 employees
- Based at two European Locations
- We provide Reliability Solutions, i.e.
 - Consultancy & Software for Analytics, Diagnostics and Prognostics
- We support the entire lifecycle of mechatronic systems:
 - Verification & Validation & Operation.
- Our methods are based on a broad expertise in failure physics and applied statistics
- We have implemented more than 100 projects with leading OEMs and fleet operators
- We optimize product development
- We support cost reduction via optimization of service and maintenance activities

Applied Statistics

Challenges: Unmanned operation in harsh environment

- Innovative, mechatronic systems
- Accessibility (location, environmental influences)
- Transportation distances
- Availability of spare parts and special technical equipment
- Available educated maintenance staff

Maintenance Objectives for Operators

- Sustainable Cost Reduction
 - Efficient Use of Man Power
 - Efficient travelling & transporting
- Risk Mitigation
 - Identification of most critical and most probable failures
- Failure Minimization
 - Monitoring of critical Subsystems
- Performance Improvement
 - Process Definition
 - Agile Actions

Information Merging

Uptime Engineering in ROMEO Making Information usable

- Integration of multiple data sources
- Analysis and combination of information
- Centralized O&M Platform for access by multiple stakeholders
- Support of maintenance process
- Intelligent Reporting and Communication

Details on Information Merging

O&M Information

- Analytics Modules Results
- Monitoring
- Visualization and Analysis

Uptime Advisory Generation

- Failure Diagnosis
- Maintenance Process
- KPI (Availability, MTTF, Statisitics)

End user application

Analytics Based Maintenance

The UPTIME Engineering Route to Predictive Maintenance

State DETECTION

Is there anything remarkable?

System Supervision

and

Pattern Recognition

and

System Response Models

- → Failure Indicators
- → Alarm & Warning

DIAGNOSIS

How did it come?

Domain Failure Knowledge

and

Reasoning Engine

and

Reliable Observation

- → Failure Modes
- → Problem Solving

PROGNOSIS

What next?

Physics of Failure Models

and

Lifetime Models

and

Load History

- → Risk Prediction
- → Recommendation

edf

∆dwen

STATE DETECTION | Formalizing Observations

- Alarm, Particle Content above expectation:
 - CNT_PRT_NULL_GBX_VAL(H,SPEC)
- Threshold Analysis, Temperature outside expected range:
 - T_GBX_BRG_NULL_VAL(H,SPEC)
- ROMEO Model: Damage Propagation
 - D_GBX_BRG_NULL_VAL(H,SPEC)
- Inspection, No Burn marks
 - NOTSP_BURNMARKS_SURF_SEAL_VAL(H,SPEC)

Turbine Alarms

6	Uptime HARV	Generator fault: Rotor current phase imbalance	555	0
6	Uptime HARV	Blade alarm: Vibrations above expected level	558	0
⚠	SCADA Alarm	Turbine in operation	0	0
8	Service and M	Maintenance	8	0

Time Series
Deviation:
Threshold functions

ROMEO Physical & Statistical Models

Field Inspections

DIAGNOSIS | Model based Reasoning Engine

PROGNOSIS| Physical Modelling

- Analysis of system components and its possible failure modes
- Consideration of boundary and most damaging load conditions
- Physical Modelling of damage (irreversible damage of micro-structure)
 - Damage Accumulation terminates
 Lifetime
- Validation of Algorithms | Inspection
- Identification of critical Assets.
- Integration in O&M Process

Process Development

Service Process | Design

- Identify Objectives and BUSINESS CASE(S)
- Map organisation in PROCESS
- INVOLVE all contributing parties
- Provide BENEFIT for each involved party

Project Benefits

- State Detection based on multiple data sources
 - Create Value from available data
- Adaptive Advisory System, incorporating field observations
 - Feedback drives quality and involves the staff
- Continuous growth of formalized operational knowledge in the organisation
 - Focus on Risk-Drivers
- Involvement of O&M staff increases acceptance of process
- Optimized O&M processes
 - Less Downtime
 - Sustainable Cost Reduction

