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A B S T R A C T   

Condition monitoring systems are deployed in various industries for decades contributing to optimizing opera
tional performance and maintenance efforts. Several publications address this potential for application in the 
offshore wind energy industry; however, none attempts to quantify the impact that longer warning times ahead 
of a failure would have on asset availability. The aim of this paper is to bridge this gap by considering partic
ularly the access restrictions for offshore operations through a probabilistic model which simulates existence of 
different condition monitoring systems on offshore wind turbines in the time domain. Results of this study 
quantify the positive impact that a longer warning time of potential-to-functional failure (P-F interval) has on 
availability, highlighting that variation of maintenance strategy through transformation of unplanned activities 
into planned interventions that can be conducted during a suitable weather window ahead of a component 
failure can lead to reduced operation and maintenance (O&M) costs.   

1. Introduction 

Achieving high asset availability in the operation of offshore wind 
power plants has been a challenge for many years. Today, availabilities 
of approximately 95 % are industry standard [1,2]. The efforts made to 
achieve these availability figures are considerable [3]. They include 
preventive maintenance measures such as the scheduled replacement of 
wearing parts, oil or grease and the response to unforeseen scenarios 
such as wind turbine failures, for example by providing appropriate 
access for different types of vessels and/or helicopters, spare parts, tools 
and technicians [4]. A failure is defined as the ‘inability of a system or 
component to perform its required functions within specified perfor
mance requirements’ [5,6]. 

One approach that reduces the need for (i) holding means of access 
available even when not needed, (ii) preventive replacement of parts 
when their effective life has not yet been reached by (iii) continuing to 
ensure that the asset is fully functional is the application of condition- 
based maintenance (CBM) strategies [7–10,45]. 

The principle of CBM is to initiate a maintenance activity based on 
the physical condition of an item, i.e. maintenance is performed prior to 
failure as soon as a specified threshold value of a condition indicator is 
exceeded. This assessment can be performed, for example, by 

observation, inspection, testing, or continuous online or offline moni
toring of one or more parameters by the operator. Considerable efforts 
are being made to investigate various CBM solutions. The first publi
cations date back to the early 2000s [11] and the topic is still of great 
interest to the industry today and presumably also in the future. Recent 
developments are described in detail in [3]. 

Most of the contributions in this area show developments of direct 
and indirect condition monitoring systems (CMS) or structural health 
monitoring systems (SHM) [12–15]. Very few attempt to quantify the 
value of these systems in terms of cost optimisation or availability. One 
early publication that specifically addresses the impact on costs and 
revenues is [16]. 

In this research, a time-based simulation based on Hidden Markov 
theory [17] is used to simulate the impact of CMS performance on life 
cycle costs. CMS performance is measured by the probability that a 
developing failure of a WT subsystem is detected. A false alarm of the 
system (i.e. the monitoring system indicates a component failure, but 
there is none) is reflected in their methodology. This effect is generally 
referred to as "false positive". Since monitoring systems do not function 
without failures, this consideration reflects the actual cost of monitoring 
as it takes into account that any unnecessary offshore operation would 
have monetary effects. The results compare the operating costs for 
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preventive maintenance with condition-based strategies. The availabil
ity gains from early failure detection are quantified with a generic 
correction factor for a base capacity factor. The study does not examine 
the impact that a longer period of offshore intervention planning 
enabled by CMS degradation warnings would have on plant availability. 
In [18], preventive and condition-based maintenance is compared in 
terms of cost and return. The authors come to the conclusion that the use 
of CMS for the given case is of rather low value. Some downsides of 
malfunctioning CMS are discussed in [19] where machine learning 
methods are used to detect failures, where false alarms can lead to 
redundant inspection, while missed detections can be more sever 
because they can lead to critical failures. 

None of the reviewed studies (i) compare corrective with condition- 
based maintenance, (ii) deploy time-based analysis for quantifying 
availability gains through CBM or (iii) investigate the performance of 
CMS with respect to their time-dependant failure detection capability; i. 
e. the question of how valuable the information about a developing 
failure is, e.g., 3 months, 2 weeks or only a few days prior to failure. The 
main aim of this study is to examine and better understand the effects of 
extended intervals between the warning about and occurrence of fail
ures in critical offshore wind turbine systems. This is achieved through 
the development of a probabilistic simulation model relying on proven 
modelling methodologies with a dedicated module that simulates 
monitoring systems. Application of the methodology in a hypothetical 
offshore wind farm application illustrates its applicability deriving a 
quantitative assessment of the benefits of increased warning periods for 
potential failures. 

The paper is organised as follows: Section 2 presents basic termi
nology on availability, maintenance intervals and the potential-to- 
functional failure (P-F) concept for characterisation of monitoring op
tions, Section 3 develops the methodology, documents the numerical 
model developed and presents the baseline case, Section 4 presents the 
results from the application to a realistic offshore wind farm, Section 5 
discusses the implications of this method and finally Section 6 summa
rises the findings of this work offering some concluding remarks. 

2. Terminology 

2.1. Availability 

One of the most common indicators used to describe operating per
formance in the wind industry is availability. It is defined as the pro
portion of time that the wind turbine generates electricity over the entire 
duration of a given time interval, or the electricity that is generated over 
the theoretically producible electricity during a time interval [20]. 
Optimising availability is at the top priorities of offshore wind operators 
as revenues can only be achieved when electricity is generated and fed 
into a grid [21–23]. 

In the early years of offshore wind energy, low availabilities were 
achieved that did not meet the expectations of the operators. Indicative 
examples are the wind farms Barrow, North Hoyle, Scroby Sands or 
Kentish Flats (WFs) in the United Kingdom (UK), which had an avail
ability of two thirds to 80% [24]. The main reasons for this shortcoming 
have been identified in early studies and are mainly: (i) low reliability of 
wind turbines (WTs) [25], (ii) underestimation of access restrictions for 
maintenance work [26], (iii) non-availability of specialised vessels for 
the above activities [27] and (iv) the application of corrective mainte
nance strategies – i.e. the reactive initialisation of maintenance opera
tions after the failure of a component or part within the WT system [28]. 
Further details on maintenance strategies and in particular on the 
concept of condition-based maintenance (CBM) are explained in Section 
2.2. 

2.2. Maintenance strategies 

WT components are subject to preventive and corrective 

maintenance measures; preventive measures to avoid failures and 
corrective measures that are carried out after a component failure [5], 
Fig. 1. 

Monitoring systems or predetermined inspections can generally 
enable CBM, which can be translated into a predictive maintenance 
strategy in a more sophisticated approach if extracted characteristics are 
linked to key performance indicators of the asset to support decisions on 
interventions. Preventive maintenance is defined as ‘CBM carried out 
following a forecast derived from repeated analysis or known charac
teristics and evaluation of the significant parameters of the degradation 
of the item’ [5]. This form of maintenance offers inherent optimisation 
potential for both preventive and corrective maintenance. 

A corrective maintenance strategy has the advantage that the useful 
life of the asset is always fully utilized. This means that there is no 
‘waste’ of resources (capacity underutilization) caused, for example, by 
preventive replacement of the asset or parts thereof. On the other hand, 
the disadvantages of a corrective maintenance strategy are that (i) it 
depends on a fast response time to avoid significant production down
time during a shutdown, and (ii) it can potentially cause greater direct 
costs, e.g. if consequential damage is caused when the item fails. The 
offshore wind industry is increasingly relying on preventive mainte
nance strategies, as long periods of inaccessibility can cause significant 
financial losses if a wind turbine is out of production and cannot be 
brought back to a running state. 

A preventive maintenance strategy has the advantage that the asset 
delivers more predictable and reliable electricity, thus ensuring an 
optimised financial return. The disadvantage of a preventive mainte
nance strategy is that it is associated (at least initially) with higher costs. 
Every preventive inspection, overhaul, replacement or test campaign is 
associated with costs. Therefore, a workable balance must be found 
between the efforts of a preventive maintenance campaign and the risk 
of component failure. This is the main objective of the Reliability- 
centred maintenance approach as a strategy. Depending on the details 
of the preventive maintenance strategy, there is the possibility of over- 
maintenance. This means, for example, that a component is typically 
replaced well before the end of its nominal life - a scenario that would be 
avoided by a corrective maintenance strategy. 

One way to mitigate the disadvantages of each of the above strategies 
is to apply a condition-based or predictive maintenance approach. Here, 
maintenance work is only carried out when it is necessary, i.e. the item is 
not unnecessarily over-maintained, but it also does not fail unexpect
edly. This is always made possible by obtaining accurate information 
about the condition of the object and its degradation mechanisms. 

Condition-based strategies rely on information based on data 
collected by continuous or periodic, online or offline CMS [29–32]. A 
clear distinction between diagnostic and prognostic systems becomes 
relevant. The following definition can be used to distinguish between 
the two: ‘Diagnosis is an assessment about the current (and past) health 
of a system based on observed symptoms, and prognosis is an assessment 

Fig. 1. Maintenance types.  
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of the future health’ [33]. 
The different maintenance strategies discussed above are illustrated 

in a simplified, conceptual manner in order to establish understanding of 
the main implications (Fig. 2). The alarm threshold in the condition- 
based maintenance strategy is often set based on experience. For 
example, if a sensor value or a processed health indicator exceeds a 
limit, the alarm is activated. 

2.3. P-F intervals 

In order to apply a CBM strategy, the failure behaviour, or physics of 
failure, of a component must be known; whereas, usually, a CBM 
strategy is most efficient if a developing failure can be detected well in 
advance. A common way to evaluate this, is the concept of P-F intervals 
[34]. It describes the interval between the point in time a developing 
failure can be detected until the failure occurrence. As defined in Sec
tion 1, a failure is defined as the ‘inability of a system or component to 
perform its required functions within specified performance re
quirements’ [5,6]. In a case of a wind turbine, this means that a 
component is not functioning and as a result a turbine is not fully 
operational. The P-F interval is therefore smaller than the lead time to 
failure (TTF), since the detection of the failure is fundamentally possible 

after the functional period has started. This is indicatively illustrated in 
Fig. 3 below. This example shows damage accumulation of a hypo
thetical component with time and according to a certain performance 
requirement. As soon as the performance requirement falls below a 
threshold, the component is in a failed state. This represents the F of the 
P-F interval. A and B represent CMS – in this example, A is capable to 
detect the failure development at time P1 and B is capable to detect the 
failure at time P2. The interval between the potential failure detection 
(here: P1 considering monitoring system A and P2 considering moni
toring system B) and the actual failure F is defined as P-F interval. In this 
case, system A offers an earlier warning to enable a better-informed 
intervention to restore its operational capability. 

The P-F interval is used as a performance indicator for CMS. The 
duration of the PF interval affects maintenance panning. A CMS with 
diagnostic capability detects a potential failure and after the fault 
detection, it is necessary to predict the time to functional failure [35]. 
The longer this interval is and the more accurately the exact point in 
time of failure occurrence can be estimated, the more benefits can be 
obtained by applying the system in a CBM strategy [36]. Several other 
terms may be used to describe the P-F interval: warning period, TTF or 
failure development period [34]. The P-F interval can be estimated 
based on experience (reliability and maintenance track records) or based 
on expert judgement, which is particularly the case for novel equipment 
[37]. Development of this type of condition deterioration/damage 
accumulation curves is based on a number of experiments which should 
then be statistically processed, taking a conservative curve as the char
acteristic for the purposes of design and further support maintenance 
related decisions. 

While developing a maintenance strategy, the benefits of each 
maintenance approach should be evaluated considering the criticality of 
certain components and the actual benefit that monitoring brings, 
aiming to optimise life cycle costs and residual risks. Quantification of 
the benefits of monitoring in this context is the aim of this paper, hence a 
more extensive reference on CMS is not further included as the main 
focus is at supporting the understanding of the value that such systems 
may have in terms of increased asset availability. A methodology to 
quantify those benefits is presented in the next sections, followed by 
presentation and discussion of results. For further detail on CMS, it is 
referred to [3,12,38]. 

Fig. 2. Main implications of maintenance types.  

Fig. 3. Schematic representation of a P-F interval.  
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3. Methodology and baseline case 

A time-based simulation model relying on Markov chains and sto
chastic modelling has been developed and deployed for solving the 
research question addressed in this paper. The model was initially pro
grammed by the authors and had been used to assess availability of 
various operating scenarios of current large-scale offshore wind farms. 
The new tool that has been employed for this study, is capable to 
simulate CMS and to assess wind farm availability sensitivity related to 
varying P-F intervals for WT system failures. A brief explanation of the 
tools’ structure and individual modules is provided in the following and 
illustrated in Fig. 4, where the main focus is on a further extension for 
the post-processing capability that is used to analyse CMS. For further 
information on the functionalities, the reader is referred to the refer
enced work [39]. 

Weather Module: Historic met-ocean data has been obtained from 
the FINO3 database. Time series of wind speed and wave height from 10 
years (2000 - 2010) in 3 h resolution was used to provide a solid rep
resentation of local conditions. A Markov chain is employed, considering 
a finite number of states, each representing and incremental change in 
significant wave height of 0.2 m and in wind speed of 1m/s. This module 
was validated for a typical case study by comparing the predicted out
puts to the input values and acceptable values of standard errors were 
observed hence the selected method was deemed appropriate (less than 
2% error). 

Power Module: The calculation of the generated energy for the entire 
wind farm is calculated in this module. The actual power output in each 
time step is calculated based on the wind speed, the wind turbine hub 
height and the power curve [46]. Met mast measurements provide wind 
speed, which is extrapolated at hub height using the power law: 

Uhub height = Ureference ∗

(
hub height

reference height

)α

(1)  

where Ureference is the wind speed at reference height in m /s measured at 
the met mast. Hub height and reference height are given in (m). The power 
law exponent α is given by: 

α =
0.37 − 0.088 ∗ ln

(
Ureference

)

1 − 0.088 ∗ ln
(

reference height
10

) (2) 

Utilising wind speed data at a reference height of 10 meters sim
plifies above equation to: 

α = 0.37 − 0.088 ∗ ln
(
Ureference

)
(3) 

If the wind speed is lower than the turbine’s cut-in wind speed or 
higher than its cut-out wind speed, the wind turbine is shut down and 
not producing power. Within the boundaries, values of the power curve 
are linearly interpolated for U1 ≤ Uhub height ≤ U2. 

Afterwards, the energy can be calculated as: 

E = P × t (4)  

where t is the time given in (hr). 
Calculating the generated energy as mentioned above, underlies the 

assumption that the yaw controller always yaws into the current wind 
direction in order to retrieve 100% of the power. Furthermore, travel 
times of the yaw system when adjusting to a new wind direction are 
neglected in this analysis as these ones have a minor impact considering 
the total lifetime of the wind farm. It is important to note that the power 
module, is necessary in order to calculate the power based on the fore
casted wind speeds of the wind farm as well as to calculate the power not 
produced/revenue loss due to failures which will account for the actual 
power production also considering downtime due to various sources. 

Reliability Module: There are various recent studies on offshore 
wind reliability studies – most relevant [40] and [3]. Ideally, reliability 
characteristics would rely on the actual physics of failure of each of the 
components, which would allow for a more realistic representation of 
the asset under consideration. For the specific questions addressed in 
this paper, however, the approach followed is considered appropriate as 
the core question is to quantify the time-related impact of CMS; which 
can be answered on a generic level here but asset-specific analyses are 
recommended in case a more elaborate reliability database is available. 
Such an approach should consider the different failure modes relevant 
for each of the WT systems, their likelihood, cause and mechanism. It is 
referred to [41] for further details on this topic. 

Fig. 4. Structure of O&M simulation tool.  
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Failure rates and representative repair times are estimated based on 
past literature [40] (the repair time does only reflect active maintenance 
periods – waiting times for weather windows (WW) are dependent on 
the conditions during the failure event). Failure rates and repair times 
for the considered systems are presented in Table 1. 

Failure rates are processed into WT failures at discrete time steps, 
which is determined by generating a random number according to a 
selected statistical distribution function around the failure. For this 

study, the exponential distribution for failure generation is selected 
according to industry practice. In time step zero, i.e. during simulation 
initialization, a TTF value is generated for each of the systems. If a 
failure occurs on the turbine in one or more of the 7 subsystems, the 
demand for a repair or replacement activity is triggered. The failure 
rates of each system are used to generate exponential distribution 
functions. Random points of these distributions are selected, and the 
failure that occurs earliest in time corresponds to the respective 
modelled failure of the turbine. For modeling reasons, only one system 
at a time is supposed to fail for each turbine. 

P-F Intervals: For computational simplicity purposes, the P-F in
tervals are incorporated in the lifecycle simulation model assuming 
linear degradation. After each replacement the component is assumed to 
return to a fully functional operating state and degradation begins after 
that, depending on the type of failure mode. Only failures that lead to 
replacement are considered for P-F interval analysis. The failed state is 
assumed to be proportional to the MTTF. Altering the failed state point 
affects the uptime of the wind turbine. This will be elaborated more in 
the sensitivity analysis section. 

Maintenance Module: This module takes into account the basic 
technical data of the wind turbine and the farm that the simulation in
vestigates in the analysis. The values used in the following analyses are 
summarized in Table 2. The metocean data is used as described above. 
Electricity production is not used for time-based availability as calcu
lated in this paper. The lifetime corresponds to the number of simulated 
years, i.e. the final availability is calculated as an average over the entire 
lifetime. Crew transfer vessels are used for minor and major repairs, 
while jack-up vessels are used for replacements, as categorized in 
Table 3. The number of ships and crane barges and their wave bearing 
capacity are included in the available means of transport considerations, 
as described in more detail in Module 4. This means that up to a wave 
height limit of 1.5 m, a maximum of 4 crew transfer vessels and one 

Table 1 
Annual failure rates and repair times baseline scenario.  

System Failure rates [Per year/Turbine] Repair times [h] 
Minor Major Replacement Minor Major Replacement 

Gearbox 0.644 0.157 0.028 8 22 231 
Generator 0.049 0.018 0.008 7 24 81 
Electrical system 0.37 0.043 0.002 5 14 18 
Pitch system 0.397 0.02 0.008 9 19 25 
Yaw system 0.259 0.036 0.012 5 20 49 
Blades 0.2 0.045 0.04 9 21 288 
Main shaft 0.231 0.026 0.009 5 18 48  

Table 2 
Site conditions baseline scenario.  

Parameter Value 

Site Bak et al 2017 
Mean wind speed at hub height 7.9 m/s 
Mean wave height 1.51 m Hs (significant wave height) 
Number of turbines 80 
Rated power 10 MW 
Total capacity 800 MW 
Lifetime 25 years 
Distance from shore 80 km  

Table 3 
Vessel and crew characteristics.  

Parameter Value  

Crew Transfer Vessel Jack-up Vessel 
Number of vessels 4 1 
Transit Time 1.9 4.1 
Maximum Wave Height 

[m] 
1.5/1.9/2.1 (varied 
parameter) 

2/1.7/2.5 (varied 
parameter) 

Mobilisation Times [h] 0.1 960 
Crew Capacity 12 35  

Fig. 5. Unplanned maintenance.  
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crane barge can be active simultaneously. The values of the maximum 
wave heights for the 2 different vessels are altered in the sensitivity 
analysis. 

The O&M strategy is based on a decision tree that follows a system 
failure in one or more wind turbines (Fig. 5). In the event of a failure, it is 
first checked whether a crew and a ship suitable for the type of repair 
required are already on site. The number of shifts required for each 
respective repair or replacement is taken into account. Component re
placements are considered to require a jack-up crane vessel, while all 
other system repairs are assumed to require a crew transfer vessel. The 
activated vessel or barge will continue its transfer to the failed WT as 
soon as weather conditions permit; environmental restrictions are 
limited to a certain wave height limit. The use of ships or crane vessels is 
further limited by the number and type of equipment available. This 
depends on the fleet structure considered (summarized in Table 2). 

As soon as a failed system is put back into operation (status reached, 
as soon as a crew ship combination has been placed on the failed WT for 
the assigned repair duration), the next failure for this system is deter
mined in the same way as the original TTF was generated. This process is 
repeated accordingly if a failed component is repaired or replaced. Note 
that system failures are neither related to each other nor dependent on 
external conditions. 

Sensitivity Analysis: The existence of a CMS is modelled by assuming 
that the alarm is triggered on the respective TTF. In case of a good 
functioning CMS, the model is hypothetically provided with information 

about an upcoming failure of any system at a duration equal to the 
difference between the TTF (CMS alarm time) and the functional failure, 
as shown in Fig. 6. On the left hand side, CMS systems with different 
capabilities are shown, similarly to what is presented in the theoretical 
background in Fig. 3. CMS Alarm 1 has poor functioning capabilities, as 
the fault is not detected before functional failure. CMS Alarms 2 and 3 
both detect incipient fault before functional failure, with CMS 3 being 
more effective. Different repair times also demonstrate the effects on 
downtime. Repair time 1&2 shows that there is downtime due to un
planned maintenance. On the contrary, repair 3 shows that the CMS 
system 3 provides enough time for maintenance planning and therefore 
the turbine is repaired before functional failure. 

For modelling reasons, the concept of different CMS capabilities and 
the effect on uptime is implemented by varying the P-F interval dura
tions for each analysis. The P-F interval is modelled as a line, with the 
slope being a variable parameter that varies respectively with the Mean 
Time To Failure (MTTF) of each subsystem, allowing for analysis of 
different CMS capability. The intercept of the line (denoted by X) is the 
time of completion of the previous repair of the turbine and therefore the 
start of counting of the new uptime. This allows for a conservative 
analysis, assuming the start of degradation of a component right after 
repair. This can include modelling of a poorly functional or inexistent 
CMS, if no alarm is triggered before the failed state (Fig. 6). Line X-F1 
shows a poorly functioning CMS, that doesn’t give an indication of an 
incipient fault before a functional failure. Lines X-F2 and X-F3 both show 

Fig. 6. Modelling of different CMS systems with respect to TTF. The P-F intervals of different CMS alarms are shown on the left and the modelling implemented is 
shown on the right. 

Fig. 7. Application of P-F intervals in the analysis.  
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well-functioning CMS with different detection capabilities. In the case of 
X-F2, the CMS system detects degradation, but the functional failure 
happens before the crew reaches and repairs the turbine. In the case of X- 
F3, the repair of the turbine happens before functional failure, so there is 
no downtime. This would model a CMS with a good diagnostic and 
prognostic capability, however the life of the asset is not fully utilised. 
The trade-off of installing CMS is that the revenue lost from partial asset 
life utilisation and sensor costs, can be gained from extra repair costs and 
uptime. 

The modelling of the P-F intervals and the CMS is shown by the 
equations 5 and 6, where λ is the corresponding failure rate of each 
turbine subsystem according to Table 1. 

MTTF =
1
λ

(5)  

YPF = βpf ∗ MTTF + X (6) 

The ‘delta’ in achieved availability through CBM is calculated 
thereafter. Any gain achieved by increased uptime is illustrated in Fig. 7. 
The application of CMS can directly be translated into reduced waiting 
times for suitable weather windows and general maintenance planning, 
or extra downtime if the alarm is triggered after functional failure. 

The P-F intervals considered in this paper are presented in Table 4. 
The coefficients βpf vary from 60% of MTTF to 140% of MTTF. It should 
be clarified that MTTF is constant and depends on the failure rates of 
each subassembly, whereas the TTF is a random number that is provided 
by the exponential reliability distribution function. Since P-F intervals 
are applied to various subassemblies with different technical charac
teristics and degradation patterns, a wide range of intervals has been 
used. It reaches from zero days (corrective maintenance) over a few days 
and weeks to several months, depending on the failure mode and the 
corresponding TTF. The various PF interval coefficients shown in 
Table 4 are simulated for different wave heights for the 2 vessels used in 
the case study, in order to investigate the effect of access limitations on 
the value of CMS. Table 5 shows the wave heights simulated. 

Outputs: The output value of interest here is availability. For this 
study, time-based availability is calculated for the lifecycle of the wind 
farm’s operational activities, with downtime being calculated as illus
trated in the top of Fig. 7. In accordance with the procedure presented in 
the Maintenance Module, the corresponding availability figures 
deploying a condition-based maintenance strategy are then calculated. 

Table 4 
P-F interval coefficients βpf used in study as percentage of MTTF.  

MTTF% 60 70 80 90 100 110 120 130 140  

Table 5 
Wave height sensitivity analysis for each PF interval.  

Simulation group CTV Wave Height JUV Wave Height 

1 1.5 2 
2 1.9 2 
3 2.3 2 
5 1.5 1.7 
6 1,5 2.5  

Fig. 8. Availability gains through extended P-F intervals at different wave height boundaries of JUVs.  
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The difference of both reflects the availability gain which is reported in 
the next section. 

4. Results 

The baseline scenario for the simulations is summarized in Tables 2 
and 3. Fifty simulations were run and analysed for each scenario: three 
different wave height boundary level combinations for the two different 
types of vessels used and nine P-F intervals applied to all components 
and failures similarly (see Tables 4 and 5). The wave height boundary 

levels have been introduced as reduced waiting times through early 
failure detection which are expected to be more significant if access is 
restricted for longer periods. The number of simulation runs has been 

Fig. 9. Availability gains through extended P-F intervals at different wave height boundaries of CTVs.  

Table 6 
Average availability gains at different P-F intervals.   

Hs Boundary / Availability 
Gain for JUV 

Hs Boundary / Availability 
Gain for CTV   

[%]   [%]  
P-F interval [%MTTF] 1.7 m 2 m 2.5 m 1.2 m 1.5 m 2 m 

60 -1.15 -0.21 -1.35 -1.69 -0.99 -0.33 
70 -0.41 -0.41 -0.46 -0.70 -0.26 -0.23 
80 -0.30 -0.33 -0.33 -0.88 -0.14 -0.18 
90 -0.31 -0.12 -0.03 -0.59 0.11 -0.01 
100 -0.05 -0.14 -0.05 0.03 0.09 -0.02 
110 -0.07 0.53 0.35 0.63 0.47 0.11 
120 0.02 1.02 0.74 0.81 0.84 0.27 
130 0.13 0.53 1.48 1.15 1.41 0.40 
140 0.69 1.04 1.79 2.18 1.63 0.45  

Fig. 10. Downtime breakdowns. Base case (left), increased wave height 
boundaries (middle) and decreased CMS response (right). 
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determined based on the standard error observed in the results that 
converged to approximately 6e-05 at a number of forty runs. Figs. 8 and 
9 show an overview of all simulation results as boxplots. The bottom and 
top edges of the boxes indicate the 25th and 75th percentiles, respec
tively, while the centre is the median. The most extreme data points that 
are not considered outliers are plotted through the whiskers and the 
outliers are indicated by the ‘+’ symbol. 

The average availability gains per P-F interval at the three different 
wave height boundary levels is presented in Table 6. 

It can clearly be seen that longer P-F intervals have a positive effect 
on availability. The effect is greatest at stricter access boundaries. A gain 
in availability up to more than 2% can be gained in a good functioning 
CMS. On the contrary, missed detections or inexistent alarm systems can 
lead to decreased production and availability. A coefficient of βpf =

100%MTTF corresponds to a CMS alarm at roughly the time of func
tional failure, which is the base case. Obviously the actual TTF is 
different each time and depends on the exponential distribution func
tion, but a check loop is included so as to ensure that PF values cannot 
exceed randomly generated values of TTF. 

A breakdown of downtimes is presented in Fig. 10. The base case is 
shown on the left with 80% MTTF. The figure in the middle has the same 
P-F interval/ CMS response but increased wave height boundaries. It can 
be observed that as expected, there is decreased downtime due to 
weather conditions, since accessibility is easier. The figure on the right 
has the same wave height boundaries as the base case, but decreased 
CMS response and consequently increased failed state downtime. 

Considering the above described results, it is now possible to esti
mate the potential value of monitoring information in terms of avail
ability gains. It shall be noted that not all monitoring systems within the 
wind turbine enable the same warning time at the same quality. How
ever, this consideration strongly depends on the type of wind turbine 
deployed and the respective CMS. It is therefore omitted to present 
eventual combinations of those systems in this paper as the focus is on 
quantifying the potential, however the framework that has been 
implemented into the numerical tool utilised can apply different P-F 
intervals for different classes of failure considered. 

5. Discussion 

Increased availabilities are expected when moving from a corrective 
to a condition-based maintenance strategy. The greatest advantages of 
condition-based maintenance strategies are seen in (i) the possibility to 
use equipment for (almost) the full theoretical useful lifetime and (ii) the 
possibility to plan offshore interventions well in advance resulting in 
decreased downtimes and increased availability. CMS, on the other 
hand, require investments for the installation of a suitable system and 
furthermore for data transfer, handling, analysis and storage [42]. The 
financial implications should carefully be compared with the gains ex
pected from the system in order to make the right decision. 

The proposed methodology relies on concepts that are proven in the 
offshore wind energy industry. However, particularly reliability esti
mates are subject to uncertainty. A methodology has therefore been 
suggested that isolates the problem allowing for further analyses based 
on any chosen set of base parameters. Results are in agreement with 
other studies, such as [18,35,43,44]: there is a potential value in the 
application of condition-monitoring technology in offshore wind. This 
paper, however, is the first of its kind that provides a quantification of 
availability gains through application of CBM. The methodology and 
results are applicable for practical implementation in commercial pro
jects and further academic research. It enables a first estimate of the 
value of a monitoring system with respect to availability gains. For 
practical implementation though, not only corrective and 
condition-based maintenance strategies should be compared. Increased 
scheduled preventive maintenance may also be a suitable means for 
failure prevention and maintenance optimization. Such decisions 
depend on various other factors such as spare part lead times, the 

availability of a suitable means of transport or the availability of skilled 
technicians. Understanding those implications along with the potential 
revenue gains will enable better informed decision-making for O&M of 
offshore wind farms. 

While choosing appropriate CMS or inspection strategies, a number 
of key performance indicators (KPIs) should be considered including 
their potential to reduce inspection frequency and inspection extent, 
mitigate unplanned maintenance, update operational capacity, avoid 
secondary damages and of course their maturity level. Further, their 
expected accuracy should also be considered in terms of probability of 
detection and sizing which are very relevant to both inspection and 
monitoring. In this current study the element of accuracy of monitoring 
is not covered as the scope of the paper lies elsewhere. In a subsequent 
study, an extra level of analysis introducing failure rates for the CMS can 
occur in order to study their effect on availability. 

6. Conclusion 

The ability to plan offshore interventions in advance through 
warnings from condition monitoring systems increases availability of 
offshore wind farms. It offers the possibility to save cost for preventive 
activities and gain availability by replacing corrective activities with 
planned interventions as shown in this study. The methodology pre
sented is flexible in its application to several cases and may directly be 
used in further commercial and research applications. Results show in a 
quantitative manner that better performance of access means (higher 
wave height restrictions) would decrease the impact of CMS on avail
ability since the plannability of interventions is increasing in importance 
with stricter access restrictions. A large potential for improving the 
revenue-to-cost structure in project execution and the risk-return bal
ance in investments is expected to result from the application of accurate 
and reliable monitoring systems. 
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