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Abstract
We demonstrate that CNN deep neural networks
can not only be used for making predictions based
on multivariate time series data, but also for ex-
plaining these predictions. This is important for a
number of applications where predictions are the
basis for decisions and actions. Hence, confidence
in the prediction result is crucial. We design a
two stage convolutional neural network architec-
ture which uses particular kernel sizes. This allows
us to utilise gradient based techniques for generat-
ing saliency maps for both the time dimension and
the features. These are then used for explaining
which features during which time interval are re-
sponsible for a given prediction, as well as explain-
ing during which time intervals was the joint con-
tribution of all features most important for that pre-
diction. We demonstrate our approach for predict-
ing the average energy production of photovoltaic
power plants and for explaining these predictions.

1 Introduction
Multivariate time series data are being generated at an ever
increasing pace due to ubiquity of sensors and the advance-
ment of IoT technologies. Classifying these multivariate time
series is crucial for utilising these data effectively, and is an
important research topic in the machine learning community
[Xing et al., 2010]. Deep neural networks such as convo-
lutional neural networks (CNNs) [LeCun et al., 1995] are
considered state-of-the-art for this task [Fawaz et al., 2018;
Zheng et al., 2014; Zheng et al., 2016], this is mainly due
to their ability to learn meaningful representations from the
data without the need for manual feature engineering. How-
ever, these networks are considered as black box models, and
suffer from lack of explainability such as understanding the
reasons for the model’s behaviour [Gilpin et al., 2018].

In this demonstration we present our method for achieving
explainable deep neural network predictions that use multi-
variate time series data. Our explanations can be used for un-
derstanding which features during which time interval are re-
sponsible for a given prediction, as well as explaining during
which time intervals was the joint contribution of all features
most important for that prediction.

2 Method for Explainable Deep Network
In order to achieve explainable predictions for both the time
dimension and the features of the data, we develop a two stage
CNN architecture. The first stage consists of a convolutional
layer and utilises a 2D convolution with filter size k×1 which
considers k time steps with 1 feature at a the time. This al-
lows us to learn filters which are able to recognise important
patterns that occur separately in the different features. This
stage is followed by a 1 × 1 convolution [Lin et al., 2013]
and is used in state-of-the-art networks such as in the incep-
tion module [Szegedy et al., 2015]. This allows us to reduce
the number of features maps generated in the first stage down
to 1. We do this because we would like to utilise a 1D con-
volution in the second stage of the architecture. The 1D con-
volution uses a filter size of k × n where n is the number
of features. Using this 1D filter allows to extract important
patterns that occur across all features.

It is important to note that by implementing this type of
two stage network we preserve both the temporal and spatial
dynamics of the multivariate time series throughout the whole
network. This is essential since we will rely on gradient based
approaches for generating saliency maps, also known as attri-
bution maps, for extracting the attention of the network where
it is deemed most relevant for its predictions for both: the
time intervals and the features.

We specifically use grad-CAM [Selvaraju et al., 2017]
which is considered one of the most successful methods for
generating saliency maps [Adebayo et al., 2018]. We ap-
ply grad-CAM independently to the last layers of both stages
which have produced fmaps = [f2d, f1d] number of feature
maps respectively. For each activation unit u at each generic
feature map A we obtain an importance weight wc associ-
ated to a specific class output c. This is done by computing
the gradient of the output score yc with respect to A which is
then globally averaged:

wc = 1
Z

∑
u
δyc

δAu
(1)

where Z is the total number of units in A. Note that in the 2D
case the activation unit u is has 2D coordinates {i, j}.

We then use wc to compute a weighted combination be-
tween all the feature maps for class c. A ReLU is then used
to remove the negative contributions as:

Lc1/2D = ReLU
(∑

fmaps
wcA

)
(2)
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Model validation testing Model validation testing

Proposed net 87% 86% 2D CNN 84% 83%
1D CNN 88% 87% MLP 72% 67%

Table 1: Classification accuracy for different deep learning models
on the prediction of photovoltaic energy production

Lc1/2D is used to find the areas in the input data that have
mainly contributed to the decision of the network for class c.
Specifically, Lc2D will highlight the contribution of the fea-
tures at different time intervals, while Lc1D will highlight the
joint contribution of all features.

3 Predictions and Explanations
Recently, the increased presence of renewable energy sources
has given rise to significant distributed power generation. It
is therefore crucial to monitor the production and consump-
tion of energy [Ceci et al., 2017]. In this work, we focus our
attention on photovoltaic (PV) power plants and use the mul-
tivariate time series dataset from the multi-plant PV energy
forecasting challenge. This is a multivariate time series where
each time step represents an hourly aggregated observations,
and each day is represented by 19 time steps (PV plants are
active from 02:00 to 20:00). Each time step consists of 7 fea-
tures related to weather conditions, and 2 features collected
from sensors placed on the plants. We use these features to
predict the average energy that will be generated over a period
of 4 days ( 80 time steps) in kW. The average power output
is bucketed into 6 classes, 0-50, 50-100, 100-150, 150-200,
200-250, and 250-300.

First, we report in Table 1 the classification accuracy for
both validation and testing and compare the one of our pro-
posed network architecture with 3 other benchmark deep
learning models. The proposed model does not sacrifice ac-
curacy. This is important since accuracy is usually sacrificed
for explainability [Gilpin et al., 2018].

After computing the predictions, we are able to visualise
the network’s attention on time and features. Here, a high net-
work attention is visualised in red, and a low attention in blue.
Figure 1 shows an example where the network has success-

fully predicted the energy generation as belonging to class
0-50 kW which is the lowest energy generation band. When
investigating the explanations, we notice from c) that the net-
work puts considerable attention on the PV plant irradiance
feature where it is very low. The network also considers the
weather temperature and the wind-speed at a time step where
they are low. In b), which corresponds to the joint contribu-
tion of all features, the network shows more attention to the
first half of the sample (representing two days), which seems
to correspond to unfavourable weather conditions for PV en-
ergy generation. In another example shown in Figure 2 the
network predicted the class 250-300 kW, the highest band for
the PV plant under study. We notice that in c) the network’s
attention is more spread across features when compared to
the previous example. However, it also focuses mainly on
the spots where the plant irradiance and the plant temperature
were high (around time intervals 35-40, 55-60, and 70-75).

Figure 1: Time and feature attention corresponding to a prediction
for a sample of class 0-50 kW

Figure 2: Time and feature attention corresponding to a prediction
for a sample of class 250-300 kW

These results show that our proposed approach is able to
visualise the network’s attention over the time dimension and
features of multivariate time series data, all while not hinder-
ing prediction performance. These explanations can be easily
accessed via a web interface that shows both the classification
probability of a multivariate time series and the explanations
for the prediction of the class with the highest probability.
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